机器学习是一门高深的东西,涉及到方方面面, 当我开始研究机器学习的时候, 我搜集到了很多 " 备忘贴士 " , 不过这些贴士只能列出我需要的关键点, 并且过于零散不方便系统学习查阅, 于是, 我整理了27个与机器学习相关的速查表. 我希望读者能从中获益, 因为我是个布道师啊 ! (emmmm, 这句是自己加的...)
机器学习进步很快, 也许这篇文章会很快过时, 但至少自2017年6月1日开始, 它们还是比较流行的. 如果你们想要全部的速查表, 不用像我一样单独下载, 因为我已经替你们打包好了.... (真感动....)
如果你觉得这篇文章 翻译的很好 对自己有用, 请点赞.
机器学习 [Machine Learning]
下面是一些实用的流程图和机器学习算法表。这里只包含了我发现的最全面的资料。
神经网络 [Neural Network Architectures]
来源: http://www.asimovinstitute.org/neural-network-zoo/
Microsoft Azure 算法流程图 [Microsoft Azure Algorithm Flowchart]
来源:https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet/
Machine learning algorithm cheat sheet for Microsoft Azure Machine Learning Studio
SAS 算法流程图 [SAS Algorithm Flowchart]
来源: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
SAS: Which machine learning algorithm should I use?
算法总结
来源:http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
A Tour of Machine Learning Algorithms
来源: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/
Which are the best known machine learning algorithms?
算法优缺点 [AlgorithmPro/Con]
来源:https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend/
Python
Python有很多在线资源, 对于本文, 只列出我认为最好的一些.
算法 [Algorithms]
来源:https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/
Python 基础知识 [Python Basics]
来源:http://datasciencefree.com/python.pdf
来源: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA/
Numpy
来源: https://www.dataquest.io/blog/numpy-cheat-sheet/
来源: http://datasciencefree.com/numpy.pdf
来源: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE/
来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb/
Pandas
来源: http://datasciencefree.com/pandas.pdf
来源: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U/
来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb/
Matplotlib
来源: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet/
来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb/
Scikit Learn
来源: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk/
来源: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html
来源: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb/
Tensorflow
来源: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb/
Pytorch
来源: https://github.com/bfortuner/pytorch-cheatsheet/
数学
如果你真的想理解机器学习, 你需要对统计学 (特别是概率), 线性代数和一些微积分有一个很好的基础, 在大学期间, 我的数学还是不错的, 但我绝对需要进修. 这些速查表提供了大多数需要了解最常见的机器学习算法背后的数学。
Probability
来源: http://www.wzchen.com/s/probability_cheatsheet.pdf
Linear Algebra
来源: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf
Statistics
来源: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf
Calculus
来源: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N
最后放出彩蛋: